Beispiel für einen schulinternen Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe

Biologie

(Entwurf: Fassung vom 09.06.2022)

Hinweis:

Gemäß § 29 Absatz 2 des Schulgesetzes bleibt es der Verantwortung der Schulen überlassen, auf der Grundlage der Kernlehrpläne in Verbindung mit ihrem Schulprogramm schuleigene Unterrichtsvorgaben zu gestalten, welche Verbindlichkeit herstellen, ohne pädagogische Gestaltungsspielräume unzulässig einzuschränken.

Den Fachkonferenzen kommt hier eine wichtige Aufgabe zu: Sie sind verantwortlich für die schulinterne Qualitätssicherung und Qualitätsentwicklung der fachlichen Arbeit und legen Ziele, Arbeitspläne sowie Maßnahmen zur Evaluation und Rechenschaftslegung fest. Sie entscheiden in ihrem Fach außerdem über Grundsätze zur fachdidaktischen und fachmethodischen Arbeit, über Grundsätze zur Leistungsbewertung und über Vorschläge an die Lehrerkonferenz zur Einführung von Lernmitteln (§ 70 SchulG).

Getroffene Verabredungen und Entscheidungen der Fachgruppen werden in schulinternen Lehrplänen dokumentiert und können von Lehrpersonen, Lernenden und Erziehungsberechtigten eingesehen werden. Während Kernlehrpläne die erwarteten Lernergebnisse des Unterrichts festlegen, beschreiben schulinterne Lehrpläne schulspezifisch Wege, auf denen diese Ziele erreicht werden sollen.

Als ein Angebot, Fachkonferenzen im Prozess der gemeinsamen Unterrichtsentwicklung zu unterstützen, steht hier ein Beispiel für einen schulinternen Lehrplan eines fiktiven Gymnasiums für das Fach Biologie zur Verfügung. Das Angebot kann gemäß den jeweiligen Bedürfnissen vor Ort frei genutzt, verändert und angepasst werden. Dabei bieten sich insbesondere die beiden folgenden Möglichkeiten des Vorgehens an:

- Fachgruppen können ihre bisherigen schulinternen Lehrpläne mithilfe der im Angebot ausgewiesenen Hinweise bzw. dargelegten Grundprinzipien auf der Grundlage des neuen Kernlehrplans überarbeiten.
- Fachgruppen können das vorliegende Beispiel mit den notwendigen schulspezifischen Modifikationen und ggf. erforderlichen Ausschärfungen vollständig oder in Teilen übernehmen.

Das vorliegende Beispiel für einen schulinternen Lehrplan berücksichtigt in seinen Kapiteln die obligatorischen Beratungsgegenstände der Fachkonferenz. Eine Übersicht über die Abfolge aller Unterrichtsvorhaben des Fachs ist enthalten und für alle Lehrpersonen der Beispielschule einschließlich der vorgenommenen Schwerpunktsetzungen verbindlich.

Auf dieser Grundlage plant und realisiert jede Lehrkraft ihren Unterricht in eigener Zuständigkeit und pädagogischer Verantwortung. Konkretisierte Unterrichtsvorhaben, wie sie exemplarisch im Lehrplannavigator NRW unter "Hinweise und Materialien" zu finden sind, besitzen demgemäß nur empfehlenden Charakter und sind somit nicht zwingender Bestandteil eines schulinternen Lehrplans. Sie dienen der individuellen Unterstützung der Lehrerinnen und Lehrer.

1 Rahmenbedingungen der fachlichen Arbeit

[...]

2 Entscheidungen zum Unterricht

Die Umsetzung des Kernlehrplans mit seinen verbindlichen Kompetenzerwartungen im Unterricht erfordert Entscheidungen auf verschiedenen Ebenen:

Die Übersicht über die *Unterrichtsvorhaben* gibt den Lehrkräften eine rasche Orientierung bezüglich der laut Fachkonferenz verbindlichen Unterrichtsvorhaben und der damit verbundenen Schwerpunktsetzungen für jedes Schuljahr.

Die Unterrichtsvorhaben im schulinternen Lehrplan sind die vereinbarte Planungsgrundlage des Unterrichts. Sie bilden den Rahmen zur systematischen Anlage und Weiterentwicklung sämtlicher im Kernlehrplan angeführter Kompetenzen, setzen jedoch klare Schwerpunkte. Sie geben Orientierung, welche Kompetenzen in einem Unterrichtsvorhaben besonders gut entwickelt werden können und berücksichtigen dabei die obligatorischen Inhaltsfelder und inhaltlichen Schwerpunkte. Dies entspricht der Verpflichtung jeder Lehrkraft, *alle* Kompetenzerwartungen des Kernlehrplans bei den Lernenden auszubilden und zu fördern.

In weiteren Absätzen dieses Kapitels werden *Grundsätze der fachdidaktischen und fachmethodischen Arbeit*, *Grundsätze der Leistungsbewertung und Leistungsrückmeldung* sowie Entscheidungen zur Wahl der *Lehr- und Lernmittel* festgehalten, um die Gestaltung von Lernprozessen und die Bewertung von Lernergebnissen im erforderlichen Umfang auf eine verbindliche Basis zu stellen.

2.1 Unterrichtsvorhaben

In der nachfolgenden Übersicht über die *Unterrichtsvorhaben* wird die für alle Lehrerinnen und Lehrer gemäß Fachkonferenzbeschluss verbindliche Verteilung der Unterrichtsvorhaben dargestellt. Die Übersicht dient dazu, für die einzelnen Jahrgangsstufen allen am Bildungsprozess Beteiligten einen schnellen Überblick über Themen bzw. Fragestellungen der Unterrichtsvorhaben unter Angabe besonderer Schwerpunkte in den Inhalten und in der Kompetenzentwicklung zu verschaffen.

Der ausgewiesene Zeitbedarf versteht sich als grobe Orientierungsgröße, die nach Bedarf über- oder unterschritten werden kann. Der schulinterne Lehrplan ist so gestaltet, dass er zusätzlichen Spielraum für Vertiefungen, besondere Interessen von Schülerinnen und Schülern, aktuelle Themen bzw. die Erfordernisse anderer besonderer Ereignisse (z.B. Praktika, Studienfahrten o.Ä.) belässt. Abweichungen über die notwendigen Absprachen hinaus sind im Rahmen des pädagogischen Gestaltungsspielraumes der Lehrkräfte möglich. Sicherzustellen bleibt allerdings auch hier, dass im Rahmen der Umsetzung der Unterrichtsvorhaben insgesamt alle Kompetenzerwartungen des Kernlehrplans Berücksichtigung finden.

Übersicht über die Unterrichtsvorhaben

EINFÜHRUNGSPHASE

UV Z1: Aufbau und Funktion der Zelle

Inhaltsfeld 1: Zellbiologie

Zeitbedarf: ca. 24 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Aufbau der Zelle, Fachliche Verfahren: Mikroskopie

Schwerpunkte der Kompetenzbereiche:

- Zusammenhänge in lebenden Systemen betrachten (S)
- Fachspezifische Modelle und Verfahren charakterisieren, auswählen und zur Untersuchung von Sachverhalten nutzen (E)
- Informationen erschließen (K)
- Informationen aufbereiten (K)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
 Mikroskopie prokaryotische Zelle eukaryotische Zelle 	 vergleichen den Aufbau von prokaryotischen und eukaryotischen Zellen (S1, S2, K1, K2, K9). begründen den Einsatz unterschiedlicher mikroskopischer Techniken für verschiedene Anwendungsgebiete (S2, E2, E9, E16, K6). 	Welche Strukturen können bei pro- karyotischen und eukaryotischen Zellen mithilfe verschiedener mikro- skopischer Techniken sichtbar gemacht werden? (ca. 6 Ustd.)
 eukaryotische Zelle: Zusammenwirken von Zellbestandtei- len, Kompartimen- 	erklären Bau und Zusammenwirken der Zellbestandteile eukaryotischer Zellen und erläutern die Bedeutung der Kompartimentierung (S2, S5, K5, K10).	Wie ermöglicht das Zusammenwir- ken der einzelnen Zellbestandteile die Lebensvorgänge in einer Zelle? (ca. 6 Ustd.)

	Kanlunatia i anta 1/a nanatana anunantuna ana	
Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
tierung, Endosym- biontentheorie	erläutern theoriegeleitet den prokary- otischen Ursprung von Mitochond- rien und Chloroplasten (E9, K7).	Welche Erkenntnisse über den Bau von Mitochondrien und Chloroplas- ten stützen die Endosymbionten- theorie?
		(ca. 2 Ustd.)
Vielzeller: Zelldiffe- renzierung und Arbeitsteilung Mikroskopie	analysieren differenzierte Zelltypen mithilfe mikroskopischer Verfahren (S5, E7, E8, E13, K10).	Welche morphologischen Angepasstheiten weisen verschiedene Zelltypen von Pflanzen und Tieren in Bezug auf ihre Funktionen auf? (ca. 6 Ustd.)
	vergleichen einzellige und vielzellige Lebewesen und erläutern die jeweili- gen Vorteile ihrer Organisationsform (S3, S6, E9, K7, K8).	Welche Vorteile haben einzellige und vielzellige Organisationsfor- men? (ca. 4 Ustd.)

UV Z2: Biomembranen

Inhaltsfeld 1: Zellbiologie

Zeitbedarf: ca. 22 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Biochemie der Zelle, Fachliche Verfahren: Untersuchung von osmotischen Vorgängen

Schwerpunkte der Kompetenzbereiche:

- Zusammenhänge in lebenden Systemen betrachten (S)
- Fachspezifische Modelle und Verfahren charakterisieren, auswählen und zur Untersuchung von Sachverhalten nutzen (E)
- Erkenntnisprozesse und Ergebnisse interpretieren und reflektieren (E)
- Merkmale wissenschaftlicher Aussagen und Methoden charakterisieren und reflektieren (E)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
Stoffgruppen: Kohlenhydrate, Lipide, Proteine	erläutern die Funktionen von Bio- membranen anhand ihrer stofflichen Zusammensetzung und räumlichen Organisation (S2, S5–7, K6).	Wie hängen Strukturen und Eigenschaften der Moleküle des Lebens zusammen? (ca. 5 Ustd.)
Biomembranen: Transport, Prinzip der Signaltrans- duktion, Zell-Zell- Erkennung	stellen den Erkenntniszuwachs zum Aufbau von Biomembranen durch technischen Fortschritt und Modellie- rungen an Beispielen dar (E12, E15– 17).	Wie erfolgte die Aufklärung der Struktur von Biomembranen und welche Erkenntnisse führten zur Weiterentwicklung der jeweiligen Modelle?
 physiologische Anpassungen: Homöostase Untersuchung von osmotischen Vorgängen 	 erklären experimentelle Befunde zu Diffusion und Osmose mithilfe von Modellvorstellungen (E4, E8, E10– 14). erläutern die Funktionen von Bio- membranen anhand ihrer stofflichen Zusammensetzung und räumlichen Organisation (S2, S5–7, K6). 	(ca. 6 Ustd.) Wie können Zellmembranen einerseits die Zelle nach außen abgrenzen und andererseits doch durchlässig für Stoffe sein? (ca. 8 Ustd.)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
	erklären die Bedeutung der Homöostase des osmotischen Werts für zelluläre Funktionen und leiten mögliche Auswirkungen auf den Organismus ab (S4, S6, S7, K6, K10).	
	 erläutern die Funktionen von Bio- membranen anhand ihrer stofflichen Zusammensetzung und räumlichen Organisation (S2, S5–7, K6). 	Wie können extrazelluläre Botenstoffe, wie zum Beispiel Hormone, eine Reaktion in der Zelle auslösen? (ca. 2 Ustd.)
		Welche Strukturen sind für die Zell- Zell-Erkennung in einem Organismus verantwortlich? (ca. 1 Ustd.)

UV Z3: Mitose, Zellzyklus und Meiose

Inhaltsfeld 1: Zellbiologie

Zeitbedarf: ca. 22 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Genetik der Zelle, Fachliche Verfahren: Analyse von Familienstammbäumen

Schwerpunkte der Kompetenzbereiche:

- Informationen austauschen und wissenschaftlich diskutieren (K)
- Sachverhalte und Informationen multiperspektivisch beurteilen (B)
- Kriteriengeleitet Meinungen bilden und Entscheidungen treffen (B)
- Entscheidungsprozesse und Folgen reflektieren (B)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
Mitose: Chromosomen, Cytoskelett Zellzyklus: Regulation	erklären die Bedeutung der Regulation des Zellzyklus für Wachstum und Entwicklung (S1, S6, E2, K3).	Wie verläuft eine kontrollierte Vermehrung von Körperzellen? (ca. 6 Ustd.)
	begründen die medizinische An- wendung von Zellwachstumshem- mern (Zytostatika) und nehmen zu den damit verbundenen Risiken Stellung (S3, K13, B2, B6–B9).	Wie kann unkontrolliertes Zell- wachstum gehemmt werden und welche Risiken sind mit der Behandlung verbunden? (ca. 2 Ustd.)
	diskutieren kontroverse Positionen zum Einsatz von embryonalen Stammzellen (K1-4, K12, B1–6, B10–B12).	Welche Ziele verfolgt die Forschung mit embryonalen Stammzellen und wie wird diese Forschung ethisch bewertet? (ca. 4 Ustd.)
Karyogramm: Genommutationen,	erläutern Ursachen und Auswirkun- gen von Chromosomen- und Ge- nommutationen (S1, S4, S6, E3,	Nach welchem Mechanismus erfolgt die Keimzellbildung und welche Mutationen können

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
Chromosomenmuta- tionen	E11, K8, K14).	dabei auftreten? (ca. 6 Ustd.)
MeioseRekombination		
Analyse von Familienstamm- bäumen	 wenden Gesetzmäßigkeiten der Vererbung auf Basis der Meiose bei der Analyse von Familienstamm- bäumen an (S6, E1–3, E11, K9, K13). 	Inwiefern lassen sich Aussagen zur Vererbung genetischer Erkrankun- gen aus Familienstammbäumen ableiten? (ca. 4 Ustd.)

UV Z4: Energie, Stoffwechsel und Enzyme

Inhaltsfeld 1: Zellbiologie

Zeitbedarf: ca. 24 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Physiologie der Zelle, Fachliche Verfahren: Untersuchung von Enzymaktivitäten

Schwerpunkte der Kompetenzbereiche:

- Erkenntnisprozesse und Ergebnisse interpretieren und reflektieren (E)
- Informationen aufbereiten (K)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
 Anabolismus und Katabolismus Energieumwand- lung: ATP-ADP- System, Energieumwand- lung: Redoxreakti- onen 	beschreiben die Bedeutung des ATP-ADP-Systems bei auf- und ab- bauenden Stoffwechselprozessen (S5, S6).	Welcher Zusammenhang besteht zwischen aufbauendem und abbau- endem Stoffwechsel in einer Zelle stofflich und energetisch? (ca. 12 Ustd.)
Enzyme: Kinetik	erklären die Regulation der Enzym- aktivität mithilfe von Modellen (E5, E12, K8, K9).	Wie können in der Zelle biochemische Reaktionen reguliert ablaufen? (ca. 12 Ustd.)
Untersuchung von Enzymaktivitäten	 entwickeln Hypothesen zur Abhängigkeit der Enzymaktivität von verschiedenen Faktoren und überprüfen diese mit experimentellen Daten (E2, E3, E6, E9, E11, E14). beschreiben und interpretieren Dia- 	

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
Enzyme: Regulation	gramme zu enzymatischen Reaktionen (E9, K6, K8, K11). • erklären die Regulation der Enzymaktivität mithilfe von Modellen (E5, E12, K8, K9).	

QUALIFIKATIONSPHASE: GRUNDKURS

UV GK-N1: Informationsübertragung durch Nervenzellen

Inhaltsfeld 2: Neurobiologie

Zeitbedarf: ca. 20 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Grundlagen der Informationsverarbeitung, Fachliche Verfahren: Potenzialmessungen

Schwerpunkte der Kompetenzbereiche:

Zusammenhänge in lebenden Systemen betrachten (S)

Erkenntnisprozesse und Ergebnisse interpretieren und reflektieren (E)

Kriteriengeleitet Meinungen bilden und Entscheidungen treffen (B)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
Bau und Funktio- nen von Nerven- zellen: Ruhepotenzial	erläutern am Beispiel von Neuronen den Zusammenhang zwischen Struk- tur und Funktion (S3, E12).	Wie ermöglicht die Struktur eines Neurons die Aufnahme und Weitergabe von Informationen? (ca. 12 Ustd.)
	 entwickeln theoriegeleitet Hypothe- sen zur Aufrechterhaltung und Be- einflussung des Ruhepotenzials (S4, E3). 	
Bau und Funktio- nen von Nerven- zellen: Aktionspotenzial Potenzialmessun- gen	 erklären Messwerte von Potenzialän- derungen an Axon und Synapse mit- hilfe der zugrundeliegenden moleku- laren Vorgänge (S3, E14). 	

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
Bau und Funktio- nen von Nerven- zellen: Erregungsleitung	vergleichen kriteriengeleitet kontinuierliche und saltatorische Erregungsleitung und wenden die ermittelten Unterschiede auf neurobiologische Fragestellungen an (S6, E1–3).	
Synapse: Funktion der erregenden chemischen Sy- napse, neuromus-	erklären die Erregungsübertragung an einer Synapse und erläutern die Auswirkungen exogener Substanzen (S1, S6, E12, K9, B1, B6).	Wie erfolgt die Informationsweiter- gabe zur nachgeschalteten Zelle und wie kann diese beeinflusst wer- den?
kuläre Synapse	 erklären Messwerte von Potenzialän- derungen an Axon und Synapse mit- hilfe der zugrundeliegenden moleku- laren Vorgänge (S3, E14). 	(ca. 8 Ustd.)
Stoffeinwirkung an Synapsen	nehmen zum Einsatz von exogenen Substanzen zur Schmerzlinderung Stellung (B5–9).	

UV GK-S1: Energieumwandlung in lebenden Systemen

Inhaltsfeld 3: Stoffwechselphysiologie

Zeitbedarf: ca. 5 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Grundlegende Zusammenhänge von Stoffwechselwegen

Schwerpunkte der Kompetenzbereiche:

• Zusammenhänge in lebenden Systemen betrachten (S)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
 Energieumwand- lung Energieentwertung Zusammenhang von aufbauendem und abbauendem Stoffwechsel 	stellen die wesentlichen Schritte des abbauenden Glucosestoffwechsels unter aeroben Bedingungen dar und erläutern diese hinsichtlich der Stoff- und Energieumwandlung (S1, S7, K9).	Wie wandeln Organismen Energie aus der Umgebung in nutz- bare Energie um? (ca. 5 Ustd)
ATP-ADP-System		
 Stofftransport zwischen den Kompartimenten 		
Chemiosmotische ATP-Bildung		

UV GK-S2: Glucosestoffwechsel – Energiebereitstellung aus Nährstoffen

Inhaltsfeld 3: Stoffwechselphysiologie

Zeitbedarf: ca. 11 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Grundlegende Zusammenhänge von Stoffwechselwegen

Schwerpunkte der Kompetenzbereiche:

- Zusammenhänge in lebenden Systemen betrachten (S)
- Informationen erschließen (K)
- Kriteriengeleitet Meinungen bilden und Entscheidungen treffen (B)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
Feinbau Mito-chondrium Stoff- und Energie-bilanz von Glykolyse, oxidative Decarboxylierung, Tricarbonsäurezyklus und Atmungskette Redoxreaktionen	stellen die wesentlichen Schritte des abbauenden Glucosestoffwechsels unter aeroben Bedingungen dar und erläutern diese hinsichtlich der Stoff- und Energieumwandlung (S1, S7, K9).	Wie kann die Zelle durch den schrittweisen Abbau von Glucose nutzbare Energie bereitstellen? (ca. 6 Ustd.)
Stoffwechselregulation auf Enzymebene	 erklären die regulatorische Wirkung von Enzymen in mehrstufigen Reaktionswegen des Stoffwechsels (S7, E1–4, E11, E12). nehmen zum Konsum eines ausgewählten Nahrungsergänzungsmittels unter stoffwechselphysiologischen Aspekten Stellung (S6, K1–4, B5, B7, B9). 	Wie beeinflussen Nahrungsergänzungsmittel als Cofaktoren den Energiestoffwechsel? (ca. 5 Ustd.)

UV GK-S3: Fotosynthese – Umwandlung von Lichtenergie in nutzbare Energie

Inhaltsfeld 3: Stoffwechselphysiologie

Zeitbedarf: ca. 18 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Grundlegende Zusammenhänge bei Stoffwechselwegen, Aufbauender Stoffwechsel, Fachliche Verfahren: Chromatografie

Schwerpunkte der Kompetenzbereiche:

- Biologische Sachverhalte betrachten (S)
- Fachspezifische Modelle und Verfahren charakterisieren, auswählen und zur Untersuchung von Sachverhalten nutzen (E)
- Informationen aufbereiten (K)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
Abhängigkeit der Fotosyntheserate von abiotischen Faktoren	analysieren anhand von Daten die Beeinflussung der Fotosyntheserate durch abiotische Faktoren (E4–11).	Von welchen abiotischen Faktoren ist die autotrophe Lebensweise von Pflanzen abhängig? (ca. 4 Ustd.)
 Funktionale Ange- passtheiten: Blattaufbau 	erklären funktionale Angepasstheiten an die fotoautotrophe Lebensweise auf verschiedenen Systemebenen (S4–S6, E3, K6–8).	Welche Blattstrukturen sind für die Fotosynthese von Bedeu- tung? (ca. 4 Ustd.)
Funktionale Ange- passtheiten: Absorptionsspekt- rum von Chloro- phyll, Wirkungs- spektrum, Feinbau Chloroplast	erklären das Wirkungsspektrum der Fotosynthese mit den durch Chroma- tografie identifizierten Pigmenten (S3, E1, E4, E8, E13).	Welche Funktionen haben Foto- synthesepigmente? (ca. 3 Ustd.)

	Konkretisierte Kompetenzerwartungen	
 Inhaltliche Aspekte 	Schülerinnen und Schüler	Sequenzierung: Leitfragen
Chromatografie Chemiosmotische	arläutara dan Zugammanhang zug	Wie erfolgt die Umwandlung von
ATP-Bildung	erläutern den Zusammenhang zwi- schen Primär- und Sekundärreaktio-	Lichtenergie in chemische Ener-
Zusammenhang von Primär- und Sekundärreaktio- nen,	nen der Fotosynthese aus stofflicher und energetischer Sicht (S2, S7, E2, K9).	gie? (ca. 7 Ustd.)
Calvin-Zyklus: Fi- xierung, Reduktion, Regeneration		
Zusammenhang von aufbauendem und abbauendem Stoffwechsel		

UV GK-Ö1: Angepasstheiten von Lebewesen an Umweltbedingungen

Inhaltsfeld 4: Ökologie

Zeitbedarf: ca. 16 Unterrichtstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Strukturen und Zusammenhänge in Ökosystemen, Fachliche Verfahren: Erfassung ökologischer Faktoren und qualitative Erfassung von Arten in einem Areal

Schwerpunkte der Kompetenzbereiche:

- Zusammenhänge in lebenden Systemen betrachten (S)
- Fragestellungen und Hypothesen auf Basis von Beobachtungen und Theorien entwickeln (E)
- Fachspezifische Modelle und Verfahren charakterisieren, auswählen und zur Untersuchung von Sachverhalten nutzen (E)
- Informationen aufbereiten (K)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
 Biotop und Bio- zönose: biotische und abiotische Fak- toren. 	erläutern das Zusammenwirken von abiotischen und biotischen Faktoren in einem Ökosystem (S5–7, K8).	Welche Forschungsgebiete und zentrale Fragestellungen bearbei- tet die Ökologie? (ca. 3 Ustd.)
 Einfluss ökologischer Faktoren auf Orga- nismen: Toleranzkur- ven 	Daten die physiologische und ökologi-	Inwiefern bedingen abiotische Faktoren die Verbreitung von Lebewesen? (ca. 5 Ustd.)
 Intra- und interspezi- fische Beziehungen: Konkurrenz Einfluss ökologischer 	 analysieren die Wechselwirkungen zwischen Lebewesen hinsichtlich in- tra- und interspezifischer Beziehun- gen (S4, S7, E9, K6–K8). erläutern die ökologische Nische als 	Welche Auswirkungen hat die Konkurrenz um Ressourcen an realen Standorten auf die Verbrei- tung von Arten? (ca. 5 Ustd.)

	Konkretisierte Kompetenzerwartungen	
Inhaltliche Aspekte	Schülerinnen und Schüler	Sequenzierung: Leitfragen
Faktoren auf Orga- nismen: ökologische Potenz	Wirkungsgefüge (S4, S7, E17, K7, K8).	
 Ökologische Nische 		
 Ökosystemmanagement: Ursache-Wirkungszusammenhänge, Erhaltungsund Renaturierungsmaßnahmen, Erfassung ökologischer Faktoren und qualitative Erfassung von Arten in einem Areal 	 bestimmen Arten in einem ausgewählten Areal und begründen ihr Vorkommen mit dort erfassten ökologischen Faktoren (E3, E4, E7–9, E15, K8). analysieren die Folgen anthropogener Einwirkung auf ein ausgewähltes Ökosystem und begründen Erhaltungs- oder Renaturierungsmaßnahmen (S7, S8, K11–14). 	Wie können Zeigerarten für das Ökosystemmanagement genutzt werden? (ca. 3 Ustd.)

UV GK-Ö2: Wechselwirkungen und Dynamik in Lebensgemeinschaften

Inhaltsfeld 4: Ökologie

Zeitbedarf: ca. 9 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Strukturen und Zusammenhänge in Ökosystemen, Einfluss des Menschen auf Ökosysteme, Nachhaltigkeit, Biodiversität

Schwerpunkte der Kompetenzbereiche:

- Zusammenhänge in lebenden Systemen betrachten (S)
- Informationen aufbereiten (K)
- Informationen austauschen und wissenschaftlich diskutieren (K)
- Sachverhalte und Informationen multiperspektivisch beurteilen (B)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
 Interspezifische Beziehungen: Parasitismus, Symbiose, Räuber-Beute- Beziehungen 	analysieren Wechselwirkungen zwischen Lebewesen hinsichtlich intraoder interspezifischer Beziehungen (S4, S7, E9, K6–K8).	In welcher Hinsicht stellen Orga- nismen selbst einen Umweltfak- tor dar? (ca. 5 Ustd.)
Ökosystemmanage- ment: nachhaltige Nutzung, Bedeu- tung und Erhalt der Biodiversität	erläutern Konflikte zwischen Bio- diversitätsschutz und Umweltnut- zung und bewerten Handlungsoptio- nen unter den Aspekten der Nach- haltigkeit (S8, K12, K14, B2, B5, B10).	Wie können Aspekte der Nach- haltigkeit im Ökosystemmanage- ment verankert werden? (ca. 4 Ustd.)

UV GK-Ö3: Stoff- und Energiefluss durch Ökosysteme und der Einfluss des Menschen

Inhaltsfeld 4: Ökologie

Zeitbedarf: ca. 9 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Strukturen und Zusammenhänge in Ökosystemen, Einfluss des Menschen auf Ökosysteme, Nachhaltigkeit, Biodiversität

Schwerpunkte der Kompetenzbereiche:

- Merkmale wissenschaftlicher Aussagen und Methoden charakterisieren und reflektieren (E)
- Informationen austauschen und wissenschaftlich diskutieren (K)
- Kriteriengeleitet Meinungen bilden und Entscheidungen treffen (B)
- Entscheidungsprozesse und Folgen reflektieren (B)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
Stoffkreislauf und Energiefluss in ei- nem Ökosystem: Nahrungsnetz	analysieren die Zusammenhänge von Nahrungsbeziehungen, Stoff- kreisläufen und Energiefluss in ei- nem Ökosystem (S7, E12, E14, K2, K5).	In welcher Weise stehen Lebens- gemeinschaften durch Energie- fluss und Stoffkreisläufe mit der abiotischen Umwelt ihres Ökosys- tems in Verbindung?
 Stoffkreislauf und Energiefluss in ei- nem Ökosystem: Kohlenstoffkreislauf 		(ca. 4 Ustd.) Welche Aspekte des Kohlenstoff- kreislaufs sind für das Verständ- nis des Klimawandels relevant? (ca. 2 Ustd.)
Folgen des anthro- pogen bedingten Treibhauseffekts	erläutern geografische, zeitliche und soziale Auswirkungen des anthropo- gen bedingten Treibhauseffektes und entwickeln Kriterien für die Bewer- tung von Maßnahmen (S3, E16, K14, B4, B7, B10, B12).	Welchen Einfluss hat der Mensch auf den Treibhauseffekt und mit welchen Maßnahmen kann der Klimawandel abgemildert wer- den? (ca. 3 Ustd.)

UV GK-G1: DNA - Speicherung und Expression genetischer Information

Inhaltsfeld 5: Genetik und Evolution

Zeitbedarf: ca. 27 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Molekulargenetische Grundlagen des Lebens

Schwerpunkte der Kompetenzbereiche:

- Zusammenhänge in lebenden Systemen betrachten (S)
- Erkenntnisprozesse und Ergebnisse interpretieren und reflektieren (E)
- Informationen aufbereiten (K)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
Speicherung und Realisierung gene- tischer Information: Bau der DNA, semikonservative Replikation, Transkription, Translation	 leiten ausgehend vom Bau der DNA das Grundprinzip der semikonservativen Replikation aus experimentellen Befunden ab (S1, E1, E9, E11, K10). erläutern vergleichend die Realisierung der genetischen Information bei Prokaryoten und Eukaryoten (S2, S5, E12, K5, K6). 	Wie wird die identische Verdopplung der DNA vor einer Zellteilung gewährleistet? (ca. 4 Ustd.) Wie wird die genetische Information der DNA zu Genprodukten bei Prokaryoten umgesetzt? (ca. 6 Ustd.) Welche Gemeinsamkeiten und Unterschiede bestehen bei der Proteinbio-
 Zusammenhänge zwischen geneti- schem Material, Genprodukten und 	 erklären die Auswirkungen von Genmutationen auf Genprodukte und Phänotyp (S4, S6, S7, E1, K8). 	synthese von Pro- und Eukaryoten? (ca. 5 Ustd.) Wie können sich Veränderungen der DNA auf die Genprodukte und den Phänotyp auswirken? (ca. 5 Ustd.)

Merkmal: Genmu- tationen	
 Regulation der Genaktivität bei Eukaryoten: Transkriptionsfaktoren, Modifikationen des Epigenoms durch DNA- erklären die Regulation der Genaktivität bei Eukaryoten durch den Einfluss von Transkriptionsfaktoren und DNA-Methylierung (S2, S6, E9, K2, K11). Wie wird die Genaktivität bei Eukaryoten durch den Einfluss von Transkriptionsfaktoren und DNA-Methylierung (S2, S6, E9, K2, K11). 	i Eukary-

UV GK-G2: Humangenetik und Gentherapie

Inhaltsfeld 5: Genetik und Evolution

Zeitbedarf: ca. 8 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Molekulargenetische Grundlagen des Lebens

Schwerpunkte der Kompetenzbereiche:

• Zusammenhänge in lebenden Systemen betrachten (S)

• Kriteriengeleitet Meinungen bilden und Entscheidungen treffen (B)

• Entscheidungsprozesse und Folgen reflektieren (B)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
Genetik menschli- cher Erkrankungen: Familienstamm- bäume, Gentest	analysieren Familienstammbäume und leiten daraus mögliche Konse- quenzen für Gentest und Beratung ab (S4, E3, E11, E15, K14, B8).	Welche Bedeutung haben Familienstammbäume für die genetische Beratung betroffener Familien?
und Beratung, Gen- therapie		(ca. 4 Ustd.)
uiorapio	bewerten Nutzen und Risiken einer Gentherapie beim Menschen (S1, K14, B3, B7–9, B11).	Welche ethischen Konflikte treten im Zusammenhang mit gentherapeutischen Behandlun- gen beim Menschen auf?
		(ca. 4 Ustd.)

UV GK-E1: Evolutionsfaktoren und Synthetische Evolutionstheorie

Inhaltsfeld 5: Genetik und Evolution

Zeitbedarf: ca. 13 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Entstehung und Entwicklung des Lebens

Schwerpunkte der Kompetenzbereiche:

- Biologische Sachverhalte betrachten (S)
- Zusammenhänge in lebenden Systemen betrachten (S)
- Informationen aufbereiten (K)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
Synthetische Evolutionstheorie: Mutation, Rekom- bination, Selektion, Variation, Gendrift	begründen die Veränderungen im Genpool einer Population mit der Wirkung der Evolutionsfaktoren (S2, S5, S6, K7).	Wie lassen sich Veränderungen im Genpool von Populationen erklä- ren? (ca. 5 Ustd.)
Synthetische Evolutionstheorie: adaptiver Wert von Verhalten, Kosten-Nutzen-Analyse, reproduktive Fitness	erläutern die Angepasstheit von Lebewesen auf Basis der reproduktiven Fitness auch unter dem Aspekt einer Kosten-Nutzen-Analyse (S3, S5–7, K7, K8).	Welche Bedeutung hat die reproduktive Fitness für die Entwicklung von Angepasstheiten? (ca. 2 Ustd.) Wie kann die Entwicklung von angepassten Verhaltensweisen erklärt werden? (ca. 2 Ustd.) Wie lässt sich die Entstehung von Sexualdimorphismus erklären? (ca. 2 Ustd.)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
Synthetische Evolutionstheorie: Koevolution	erläutern die Angepasstheit von Le- bewesen auf Basis der reproduktiven Fitness auch unter dem Aspekt einer Kosten-Nutzen-Analyse (S3, S5–7, K7, K8).	Welche Prozesse laufen bei der Koevolution ab? (ca. 2 Ustd.)

UV GK-E2: Stammbäume und Verwandtschaft

Inhaltsfeld 5: Genetik und Evolution

Zeitbedarf: ca. 16 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Entstehung und Entwicklung des Lebens

Schwerpunkte der Kompetenzbereiche:

- Zusammenhänge in lebenden Systemen betrachten (S)
- Fragestellungen und Hypothesen auf Basis von Beobachtungen und Theorien entwickeln (E)
- Merkmale wissenschaftlicher Aussagen und Methoden charakterisieren und reflektieren (E)
- Informationen aufbereiten (K)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
Stammbäume und Verwandtschaft: Artbildung, Biodiversität, populationsgenetischer Artbegriff, Isolation	erklären Prozesse des Artwandels und der Artbildung mithilfe der Syn- thetischen Evolutionstheorie (S4, S6, S7, E12, K6, K7).	Wie kann es zur Entstehung unterschiedlicher Arten kommen? (ca. 4 Ustd.)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
molekularbiologi- sche Homologien, ursprüngliche und abgeleitete Merk- male	deuten molekularbiologische Homologien im Hinblick auf phylogenetische Verwandtschaft und vergleichen diese mit konvergenten Entwicklungen (S1, S3, E1, E9, E12, K8).	Welche molekularen Merkmale deuten auf eine phylogenetische Verwandtschaft hin? (ca. 3 Ustd.)
	 analysieren phylogenetische Stamm- bäume im Hinblick auf die Verwandt- schaft von Lebewesen und die Evo- lution von Genen (S4, E2, E10, E12, K9, K11). 	Wie lässt sich die phylogeneti- sche Verwandtschaft auf ver- schiedenen Ebenen ermitteln, darstellen und analysieren? (ca. 4 Ustd.)
	deuten molekularbiologische Homologien im Hinblick auf phylogenetische Verwandtschaft und vergleichen diese mit konvergenten Entwicklungen (S1, S3, E1, E9, E12, K8).	Wie lassen sich konvergente Entwicklungen erkennen? (ca. 3 Ustd.)
Synthetische Evolutionstheorie: Abgrenzung von nicht-naturwissen- schaftlichen Vorstellungen	begründen die Abgrenzung der Synthetischen Evolutionstheorie gegen nicht-naturwissenschaftliche Positionen und nehmen zu diesen Stellung (E15–E17, K4, K13, B1, B2, B5).	Wie lässt sich die Synthetische Evolutionstheorie von nicht-natur- wissenschaftlichen Vorstellungen abgrenzen? (ca. 2 Ustd.)

QUALIFIKATIONSPHASE: LEISTUNGSKURS

UV LK-N1: Erregungsentstehung und Erregungsleitung an einem Neuron

Inhaltsfeld 2: Neurobiologie

Zeitbedarf: ca. 18 Unterrichtstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Grundlagen der Informationsverarbeitung,

Fachliche Verfahren: Potenzialmessungen, neurophysiologische Verfahren

Schwerpunkte der Kompetenzbereiche:

- Zusammenhänge in lebenden Systemen betrachten (S)
- Erkenntnisprozesse und Ergebnisse interpretieren und reflektieren (E)
- Sachverhalte und Informationen multiperspektivisch beurteilen (B)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
Bau und Funktio- nen von Nerven- zellen: Ruhepotenzial	erläutern am Beispiel von Neuronen den Zusammenhang zwischen Struk- tur und Funktion (S3, E12).	Wie ermöglicht die Struktur eines Neurons die Aufnahme und Weitergabe von Informationen? (ca. 12 Ustd.)
	entwickeln theoriegeleitet Hypothesen zur Aufrechterhaltung und Beeinflussung des Ruhepotenzials (S4, E3).	
 Bau und Funktionen von Nervenzellen: Aktionspotenzial neurophysiologische Verfahren, Potenzialmessungen 	erklären Messwerte von Potenzialän- derungen an Axon und Synapse mit- hilfe der zugrundeliegenden moleku- laren Vorgänge und stellen die Anwendung eines zugehörigen neu- rophysiologischen Verfahrens dar (S3, E14).	

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
Bau und Funktio- nen von Nerven- zellen: Erregungsleitung	vergleichen kriteriengeleitet kontinuierliche und saltatorische Erregungsleitung und wenden die ermittelten Unterschiede auf neurobiologische Fragestellungen an (S6, E1–3).	
Störungen des neuronalen Systems	 analysieren die Folgen einer neuro- nalen Störung aus individueller und gesellschaftlicher Perspektive (S3, K1–4, B2, B6). 	Wie kann eine Störung des neuro- nalen Systems die Informationswei- tergabe beeinflussen? (ca. 2 Ustd.)
Bau und Funktio- nen von Nerven- zellen: primäre und sekun- däre Sinneszelle, Rezeptorpotenzial	erläutern das Prinzip der Signaltrans- duktion bei primären und sekundären Sinneszellen (S2, K6, K10).	Wie werden Reize aufgenommen und zu Signalen umgewandelt? (ca. 4 Ustd.)

UV LK-N2: Informationsweitergabe über Zellgrenzen

Inhaltsfeld 2: Neurobiologie

Zeitbedarf: ca. 14 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Grundlagen der Informationsverarbeitung, Neuronale Plastizität

Schwerpunkte der Kompetenzbereiche:

- Zusammenhänge in lebenden Systemen betrachten (S)
- Informationen aufbereiten (K)
- Kriteriengeleitet Meinungen bilden und Entscheidungen treffen (B)

1 1 1df 1 A 1 d	Konkretisierte Kompetenzerwartungen	Coguanziarungu Laitfragan
 Inhaltliche Aspekte 	Schülerinnen und Schüler	Sequenzierung: Leitfragen
Synapse: Funktion der erregenden che- mischen Synapse, neuromuskuläre Sy- napse	erklären die Erregungsübertragung an einer Synapse und erläutern die Auswirkungen exogener Substanzen (S1, S6, E12, K9, B1, B6).	Wie erfolgt die Erregungsleitung vom Neuron zur nachgeschalte- ten Zelle und wie kann diese beeinflusst werden? (ca. 8 Ustd.)
Verrechnung: Funktion einer hemmenden Synapse, räumliche und zeitliche Summation	erklären Messwerte von Potenzialänderungen an Axon und Synapse mithilfe der zugrundeliegenden molekularen Vorgänge und stellen die Anwendung eines zugehörigen neurophysiologischen Verfahrens dar (S3, E14).	
	 erläutern die Bedeutung der Verrech- nung von Potenzialen für die Erre- gungsleitung (S2, K11). 	
Stoffeinwirkung an Synapsen	nehmen zum Einsatz von exogenen Substanzen zur Schmerzlinderung Stellung (B5–9).	
Zelluläre Prozesse	erläutern die synaptische Plastizität auf der zellulären Ebene und leiten	Wie kann Lernen auf neuronaler

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
des Lernens	ihre Bedeutung für den Prozess des Lernens ab (S2, S6, E12, K1).	Ebene erklärt werden? (ca. 4 Ustd.)
Hormone: Hormon- wirkung, Verschrän- kung hormoneller und neuronaler Steu- erung	beschreiben die Verschränkung von hormoneller und neuronaler Steue- rung am Beispiel der Stressreaktion (S2, S6).	Wie wirken neuronales System und Hormonsystem bei der Stressreaktion zusammen? (ca. 2 Ustd.)

UV LK-S1: Energieumwandlung in lebenden Systemen

Inhaltsfeld 3: Stoffwechselphysiologie

Zeitbedarf: ca. 6 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Grundlegende Zusammenhänge von Stoffwechselwegen

Schwerpunkte der Kompetenzbereiche:

- Zusammenhänge in lebenden Systemen betrachten (S)
- Erkenntnisprozesse und Ergebnisse interpretieren und reflektieren (E)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
Energieumwand- lungEnergieentwertung	vergleichen den membranbasierten Mechanismus der Energieumwand- lung in Mitochondrien und Chloro-	Wie wandeln Organismen Energie aus der Umgebung in nutzbare Energie um?
Zusammenhang von aufbauendem und abbauendem Stoffwechsel	plasten auch auf Basis von energetischen Modellen (S4, S7, E12, K9, K11).	(ca. 6 Ustd)
ATP-ADP-System		
Stofftransport zwi- schen den Kom- partimenten		
Chemiosmotische ATP-Bildung		

UV LK-S2: Glucosestoffwechsel – Energiebereitstellung aus Nährstoffen

Inhaltsfeld 3: Stoffwechselphysiologie

Zeitbedarf: ca. 16 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Grundlegende Zusammenhänge von Stoffwechselwegen

Schwerpunkte der Kompetenzbereiche:

- Zusammenhänge in lebenden Systemen betrachten (S)
- Erkenntnisprozesse und Ergebnisse interpretieren und reflektieren (E)
- Informationen erschließen (K)
- Kriteriengeleitet Meinungen bilden und Entscheidungen treffen (B)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
 Feinbau Mito-chondrium Stoff- und Energie-bilanz von Glykolyse, oxidative Decarboxylierung, Tricarbonsäure-zyklus und Atmungskette Energetisches Modell der Atmungskette Redoxreaktionen 	 stellen die wesentlichen Schritte des abbauenden Glucosestoffwechsels unter aeroben und anaeroben Bedingungen dar und erläutern diese hinsichtlich der Stoff- und Energieumwandlung (S1, S7, K9). vergleichen den membranbasierten Mechanismus der Energieumwandlung in Mitochondrien und Chloroplasten auch auf Basis von energetischen Modellen (S4, S7, E12, K9, K11). 	Wie kann die Zelle durch den schrittweisen Abbau von Glucose nutzbare Energie bereitstellen? (ca. 8 Ustd.)
 Alkoholische Gärung und Milch- säuregärung 	stellen die wesentlichen Schritte des abbauenden Glucosestoffwechsels unter aeroben und anaeroben Bedin- gungen dar und erläutern diese hin-	Welche Bedeutung haben Gärungsprozesse für die Energie- gewinnung? (ca. 2 Ustd.)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
Stoffwechselregu- lation auf Enzym- ebene	 sichtlich der Stoff- und Energieumwandlung (S1, S7, K9). erklären die regulatorische Wirkung von Enzymen in mehrstufigen Reaktionswegen des Stoffwechsels (S7, E1–4, E11, E12). nehmen zum Konsum eines ausgewählten Nahrungsergänzungsmittels unter stoffwechselphysiologischen Aspekten Stellung (S6, K1–4, B5, B7, B9). 	Wie beeinflussen Nahrungs- ergänzungsmittel als Cofaktoren den Energiestoffwechsel? (ca. 6 Ustd.)

UV LK-S3: Fotosynthese – Umwandlung von Lichtenergie in nutzbare Energie

Inhaltsfeld 3: Stoffwechselphysiologie

Zeitbedarf: ca. 24 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Grundlegende Zusammenhänge bei Stoffwechselwegen, Aufbauender Stoffwechsel, Fachliche Verfahren: Chromatografie, Tracer-Methode

Schwerpunkte der Kompetenzbereiche:

- Biologische Sachverhalte betrachten (S)
- Fragestellungen und Hypothesen auf Basis von Beobachtungen und Theorien entwickeln (E)
- Fachspezifische Modelle und Verfahren charakterisieren, auswählen und zur Untersuchung von Sachverhalten nutzen (E)
- Informationen aufbereiten (K)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
Abhängigkeit der Fotosyntheserate von abiotischen Faktoren	analysieren anhand von Daten die Beeinflussung der Fotosyntheserate durch abiotische Faktoren (E4–11).	Von welchen abiotischen Faktoren ist die autotrophe Lebensweise von Pflanzen abhängig? (ca. 4 Ustd.)
 Funktionale Angepasstheiten: Blattaufbau 	erklären funktionale Angepasstheiten an die fotoautotrophe Lebensweise auf verschiedenen Systemebenen (S4–S6, E3, K6–8).	Welche Blattstrukturen sind für die Fotosynthese von Bedeutung? (ca. 4 Ustd.)
Funktionale Ange- passtheiten: Absorptionsspekt- rum von Chloro- phyll, Wirkungs- spektrum, Licht- sammelkomplex,	erklären das Wirkungsspektrum der Fotosynthese mit den durch Chroma- tografie identifizierten Pigmenten (S3, E1, E4, E8, E13).	Welche Funktionen haben Fotosyn- thesepigmente? (ca. 4 Ustd.)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
Feinbau Chloroplast Chromatografie Chemiosmotische ATP-Bildung Energetisches Modell der Lichtreaktionen Zusammenhang von Primär- und Sekundärreaktionen, Calvin-Zyklus: Fixierung, Reduktion, Regeneration Tracer-Methode Zusammenhang von aufbauendem und abbauendem Stoffwechsel	 vergleichen den membranbasierten Mechanismus der Energieumwandlung in Mitochondrien und Chloroplasten auch auf Basis von energetischen Modellen (S4, S7, E12, K9, K11). erläutern den Zusammenhang zwischen Primär- und Sekundärreaktionen der Fotosynthese aus stofflicher und energetischer Sicht (S2, S7, E2, K9). werten durch die Anwendung von Tracermethoden erhaltene Befunde zum Ablauf mehrstufiger Reaktionswege aus (S2, E9, E10, E15). 	Wie erfolgt die Umwandlung von Lichtenergie in chemische Energie? (ca. 12 Ustd.)

UV LK-S4: Fotosynthese – natürliche und anthropogene Prozessoptimierung

Inhaltsfeld 3: Stoffwechselphysiologie

Zeitbedarf: ca. 8 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Grundlegende Zusammenhänge bei Stoffwechselwegen, Aufbauender Stoffwechsel

Schwerpunkte der Kompetenzbereiche:

- Zusammenhänge in lebenden Systemen betrachten (S)
- Merkmale wissenschaftlicher Aussagen und Methoden charakterisieren und reflektieren (E)
- Entscheidungsprozesse und Folgen reflektieren (B)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
 Funktionale Angepasstheiten: Blattaufbau C₄-Pflanzen Stofftransport zwischen Kompartimenten 	• vergleichen die Sekundärvorgänge bei C ₃ - und C ₄ - Pflanzen und erklä- ren diese mit der Angepasstheit an unterschiedliche Standortfaktoren (S1, S5, S7, K7).	Welche morphologischen und physiologischen Angepasstheiten ermöglichen eine effektive Foto- synthese an heißen und trocke- nen Standorten? (ca. 4 Ustd.)
 Zusammenhang von Primär- und Sekun- därreaktionen 	beurteilen und bewerten multiper- spektivisch Zielsetzungen einer bio- technologisch optimierten Fotosyn- these im Sinne einer nachhaltigen Entwicklung (E17, K2, K13, B2, B7, B12).	Inwiefern können die Erkennt- nisse aus der Fotosynthesefor- schung zur Lösung der weltwei- ten CO ₂ -Problematik beitragen? (ca. 4 Ustd.)

UV LK-Ö1: Angepasstheiten von Lebewesen an Umweltbedingungen

Inhaltsfeld 4: Ökologie

Zeitbedarf: ca. 22 Unterrichtstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Strukturen und Zusammenhänge in Ökosystemen,

Fachliche Verfahren: Erfassung ökologischer Faktoren und quantitative und qualitative Erfassung von Arten in einem Areal

Schwerpunkte der Kompetenzbereiche:

- Zusammenhänge in lebenden Systemen betrachten (S)
- Fragestellungen und Hypothesen auf Basis von Beobachtungen und Theorien entwickeln (E)
- Fachspezifische Modelle und Verfahren charakterisieren, auswählen und zur Untersuchung von Sachverhalten nutzen (E)
- Informationen aufbereiten (K)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
 Biotop und Bio- zönose: biotische und abiotische Faktoren. 	 erläutern das Zusammenwirken von abiotischen und biotischen Faktoren in einem Ökosystem (S5–7, K8). 	Welche Forschungsgebiete und zentrale Fragestellungen bearbeitet die Ökologie? (ca. 3 Ustd.)
 Einfluss ökologischer Faktoren auf Orga- nismen: Toleranzkur- ven 	 untersuchen auf der Grundlage von Daten die physiologische und ökolo- gische Potenz von Lebewesen (S7, E1–3, E9, E13). 	Inwiefern bedingen abiotische Faktoren die Verbreitung von Lebewesen? (ca. 8 Ustd.)
Intra- und interspezi- fische Beziehungen: Konkurrenz, Einfluss ökologischer	 analysieren die Wechselwirkungen zwischen Lebewesen hinsichtlich in- tra- und interspezifischer Beziehun- gen (S4, S7, E9, K6–K8). 	Welche Auswirkungen hat die Kon- kurrenz um Ressourcen an realen Standorten auf die Verbreitung von Arten?

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
Faktoren auf Organismen: ökologische Potenz • Ökologische Nische	 erläutern die ökologische Nische als Wirkungsgefüge (S4, S7, E17, K7, K8). 	(ca. 7 Ustd.)
Ökosystemmanage- ment: Ursache-Wir- kungszusammen- hänge, Erhaltungs- und Renaturie- rungsmaßnahmen,	bestimmen Arten in einem ausge- wählten Areal und begründen ihr Vorkommen mit dort erfassten öko- logischen Faktoren (E3, E4, E7–9, E15, K8).	Wie können Zeigerarten für das Ökosystemmanagement genutzt werden? (ca. 4 Ustd.)
Erfassung ökologi- scher Faktoren und quantitative und qualitative Erfas- sung von Arten in einem Areal	 analysieren die Folgen anthropogener Einwirkung auf ein ausgewähltes Ökosystem und begründen Erhaltungs- oder Renaturierungsmaßnahmen (S7, S8, K11–14). 	

UV LK-Ö2: Wechselwirkungen und Dynamik in Lebensgemeinschaften

Inhaltsfeld 4: Ökologie

Zeitbedarf: ca. 18 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Strukturen und Zusammenhänge in Ökosystemen, Einfluss des Menschen auf Ökosysteme, Nachhaltigkeit, Biodiversität

Schwerpunkte der Kompetenzbereiche:

- Zusammenhänge in lebenden Systemen betrachten (S)
- Erkenntnisprozesse und Ergebnisse interpretieren und reflektieren (E)
- Informationen austauschen und wissenschaftlich diskutieren (K)
- Sachverhalte und Informationen multiperspektivisch beurteilen (B)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
 Idealisierte Populationsentwicklung: exponentielles und logistisches Wachstum Fortpflanzungsstrategien: r- und K-Strategien 	 interpretieren grafische Darstellungen der Populationsdynamik unter idealisierten und realen Bedingungen auch unter Berücksichtigung von Fortpflanzungsstrategien (S5, E9, E10, E12, K9). 	Welche grundlegenden Annahmen gibt es in der Ökologie über die Dynamik von Populationen? (ca. 6 Ustd.)
 Interspezifische Be- ziehungen: Parasitis- mus, Symbiose, Räu- ber-Beute-Beziehun- gen 	 analysieren Wechselwirkungen zwischen Lebewesen hinsichtlich intra- oder interspezifischer Beziehungen (S4, S7, E9, K6–K8). 	In welcher Hinsicht stellen Organismen selbst einen Umweltfaktor dar? (ca. 6 Ustd.)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
Ökosystemmanagement: nachhaltige Nutzung, Bedeutung und Erhalt der Biodiversität Hormonartig wirkende Substanzen in der Umwelt	 erläutern Konflikte zwischen Biodiversitätsschutz und Umweltnutzung und bewerten Handlungsoptionen unter den Aspekten der Nachhaltigkeit (S8, K12, K14, B2, B5, B10). analysieren Schwierigkeiten der Risikobewertung für hormonartig wirkende Substanzen in der Umwelt unter Berücksichtigung verschiedener Interessenslagen (E15, K10, K14, B1, B2, B5). 	Wie können Aspekte der Nach- haltigkeit im Ökosystemmanage- ment verankert werden? (ca. 6 Ustd.)

UV LK-Ö3: Stoff- und Energiefluss durch Ökosysteme und der Einfluss des Menschen

Inhaltsfeld 4: Ökologie

Zeitbedarf: ca. 18 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Strukturen und Zusammenhänge in Ökosystemen, Einfluss des Menschen auf Ökosysteme, Nachhaltigkeit, Biodiversität

Schwerpunkte der Kompetenzbereiche:

- Merkmale wissenschaftlicher Aussagen und Methoden charakterisieren und reflektieren (E)
- Informationen austauschen und wissenschaftlich diskutieren (K)
- Kriteriengeleitet Meinungen bilden und Entscheidungen treffen (B)
- Entscheidungsprozesse und Folgen reflektieren (B)

	Konkretisierte Kompetenzerwartungen	
Inhaltliche Aspekte	Schülerinnen und Schüler	Sequenzierung: Leitfragen
Stoffkreislauf und Energiefluss in ei- nem Ökosystem: Nahrungsnetz	 analysieren die Zusammenhänge von Nahrungsbeziehungen, Stoff- kreisläufen und Energiefluss in ei- nem Ökosystem (S7, E12, E14, K2, K5). 	In welcher Weise stehen Lebensgemeinschaften durch Ener- giefluss und Stoffkreisläufe mit der abiotischen Umwelt ihres Ökosystems in Verbindung? (ca. 5 Ustd.)
Stoffkreislauf und Energiefluss in ei- nem Ökosystem: Kohlenstoffkreislauf		Welche Aspekte des Kohlenstoff- kreislaufs sind für das Verständnis des Klimawandels relevant? (ca. 3 Ustd.)
 Folgen des anthropogen bedingten Treibhauseffekts Ökologischer Fußabdruck 	 erläutern geografische, zeitliche und soziale Auswirkungen des anthropo- gen bedingten Treibhauseffektes und entwickeln Kriterien für die Bewer- tung von Maßnahmen (S3, E16, K14, B4, B7, B10, B12). 	Welchen Einfluss hat der Mensch auf den Treibhaus- effekt und mit welchen Maßnahmen kann der Klimawandel abgemildert werden? (ca. 5 Ustd.)
	beurteilen anhand des ökologischen Fußabdrucks den Verbrauch endli- cher Ressourcen aus verschiedenen Perspektiven (K13, K14, B8, B10, B12).	
Stickstoffkreislauf Ökosystemma- nagement: Ursa- che-Wirkungszu- sammenhänge, nachhaltige Nut- zung	 analysieren die Folgen anthropogener Einwirkung auf ein ausgewähltes Ökosystem und begründen Erhaltungs- oder Renaturierungsmaßnahmen (S7, S8, K11–14). analysieren die Zusammenhänge von Nahrungsbeziehungen, Stoffkreisläufen und Energiefluss in einem Ökosystem (S7, E12, E14, K2, K5). 	Wie können umfassende Kennt- nisse über ökologische Zusammen- hänge helfen, Lösungen für ein komplexes Umweltproblem zu ent- wickeln? (ca. 5 Ustd.)

UV LK-G1: DNA - Speicherung und Expression genetischer Information

Inhaltsfeld 5: Genetik und Evolution

Zeitbedarf: ca. 28 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Molekulargenetische Grundlagen des Lebens, Fachliche Verfahren: PCR, Gelelektrophorese

Schwerpunkte der Kompetenzbereiche:

- Zusammenhänge in lebenden Systemen betrachten (S)
- Erkenntnisprozesse und Ergebnisse interpretieren und reflektieren (E)
- Informationen aufbereiten (K)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
Speicherung und Realisierung gene- tischer Information: Bau der DNA, semikonservative Replikation, Transkription, Translation	 leiten ausgehend vom Bau der DNA das Grundprinzip der semikonservativen Replikation aus experimentellen Befunden ab (S1, E1, E9, E11, K10). erläutern vergleichend die Realisierung der genetischen Information bei Prokaryoten und Eukaryoten (S2, S5, E12, K5, K6). deuten Ergebnisse von Experimenten zum Ablauf der Proteinbiosynthese (u. a. zur Entschlüsselung des 	Wie wird die identische Verdopplung der DNA vor einer Zellteilung gewährleistet? (ca. 4 Ustd.) Wie wird die genetische Information der DNA zu Genprodukten bei Prokaryoten umgesetzt? (ca. 8 Ustd.)
	genetischen Codes) (S4, E9, E12, K2, K9). • erläutern vergleichend die Realisie-	Welche Gemeinsamkeiten und Un-
	rung der genetischen Information bei Prokaryoten und Eukaryoten (S2,	terschiede bestehen bei der Pro-

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
	S5, E12, K5, K6).	teinbiosynthese von Pro- und Euka- ryoten? (ca. 5 Ustd.)
Zusammenhänge zwischen geneti- schem Material, Genprodukten und Merkmal: Genmu- tationen	erklären die Auswirkungen von Gen- mutationen auf Genprodukte und Phänotyp (S4, S6, S7, E1, K8).	Wie können sich Veränderungen der DNA auf die Genprodukte und den Phänotyp auswirken? (ca. 5 Ustd.)
PCRGelelektrophorese	erläutern PCR und Gelelektrophorese unter anderem als Verfahren zur Feststellung von Genmutationen (S4, S6, E8–10, K11).	Mit welchen molekularbiologischen Verfahren können zum Beispiel Genmutationen festgestellt wer- den? (ca. 6 Ustd.)

UV LK-G2: DNA - Regulation der Genexpression und Krebs

Inhaltsfeld 5: Genetik und Evolution

Zeitbedarf: ca. 20 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Molekulargenetische Grundlagen des Lebens

Schwerpunkte der Kompetenzbereiche:

- Zusammenhänge in lebenden Systemen betrachten (S)
- Erkenntnisprozesse und Ergebnisse interpretieren und reflektieren (E)
- Informationen austauschen und wissenschaftlich diskutieren (K)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
Regulation der Genaktivität bei Eukaryoten: Transkriptionsfak- toren, Modifikatio- nen des Epige- noms durch DNA- Methylierung, His- tonmodifikation, RNA-Interferenz	 erklären die Regulation der Genaktivität bei Eukaryoten durch den Einfluss von Transkriptionsfaktoren und DNA-Methylierung (S2, S6, E9, K2, K11). erläutern die Genregulation bei Eukaryoten durch RNA-Interferenz und Histon-Modifikation anhand von Modellen (S5, S6, E4, E5, K1, K10). 	Wie wird die Genaktivität bei Eukaryoten gesteuert? (ca. 10 Ustd.)
Krebs: Krebszellen, Onko- gene und Anti-On- kogene, personali- sierte Medizin	 begründen Eigenschaften von Krebszellen mit Veränderungen in Proto-Onkogenen und Anti-Onkogenen (Tumor-Suppressor-Genen) (S3, S5, S6, E12). begründen den Einsatz der personalisierten Medizin in der Krebstherapie 	Wie können zelluläre Faktoren zum ungehemmten Wachstum der Krebszellen führen? (ca. 6 Ustd.) Welche Chancen bietet eine personalisierte Krebstherapie?
	(S4, S6, E14, K13).	(ca. 4 Ustd.)

UV LK-G3: Humangenetik, Gentechnik und Gentherapie

Inhaltsfeld 5: Genetik und Evolution

Zeitbedarf: ca. 18 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Molekulargenetische Grundlagen des Lebens, Fachliche Verfahren: Gentechnik: Veränderung und Einbau von DNA, Gentherapeutische Verfahren

Schwerpunkte der Kompetenzbereiche:

- Zusammenhänge in lebenden Systemen betrachten (S)
- Kriteriengeleitet Meinungen bilden und Entscheidungen treffen (B)
- Entscheidungsprozesse und Folgen reflektieren (B)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
Genetik menschli- cher Erkrankun- gen: Familienstamm- bäume, Gentest und Beratung, Gentherapie	analysieren Familienstammbäume und leiten daraus mögliche Konse- quenzen für Gentest und Beratung ab (S4, E3, E11, E15, K14, B8).	Welche Bedeutung haben Familienstammbäume für die genetische Beratung betroffener Familien? (ca. 4 Ustd.)
Gentechnik: Veränderung und Einbau von DNA, Gentherapeutische Verfahren	erklären die Herstellung rekombinanter DNA und nehmen zur Nutzung gentechnisch veränderter Organismen Stellung (S1, S8, K4, K13, B2, B3, B9, B12).	Wie wird rekombinante DNA hergestellt und vermehrt? Welche ethischen Konflikte treten bei der Nutzung gentechnisch veränderter Organismen auf? (ca. 8 Ustd.)
Genetik menschli-	bewerten Nutzen und Risiken einer Gentherapie beim Menschen und	Welche ethischen Konflikte treten

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
cher Erkrankungen: Familienstammbäume, Gentest und Beratung, Gentherapie	nehmen zum Einsatz gentherapeutischer Verfahren Stellung (S1, K14, B3, B7–9, B11).	im Zusammenhang mit genthera- peutischen Behandlungen beim Menschen auf? (ca. 6 Ustd.)

UV LK-E1: Evolutionsfaktoren und Synthetische Evolutionstheorie

Inhaltsfeld 5: Genetik und Evolution

Zeitbedarf: ca. 20 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Entstehung und Entwicklung des Lebens

Schwerpunkte der Kompetenzbereiche:

- Biologische Sachverhalte betrachten (S)
- Zusammenhänge in lebenden Systemen betrachten (S)
- Informationen aufbereiten (K)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
Synthetische Evolutionstheorie: Mutation, Rekom- bination, Selektion, Variation, Gendrift	begründen die Veränderungen im Genpool einer Population mit der Wirkung der Evolutionsfaktoren (S2, S5, S6, K7).	Wie lassen sich Veränderungen im Genpool von Populationen erklä- ren? (ca. 6 Ustd.)
Synthetische Evolutionstheorie: adaptiver Wert von Verhalten, Kosten- Nutzen-Analyse, reproduktive Fitness	erläutern die Angepasstheit von Le- bewesen auf Basis der reproduktiven Fitness auch unter dem Aspekt einer Kosten-Nutzen-Analyse (S3, S5–7, K7, K8).	Welche Bedeutung hat die reproduktive Fitness für die Entwicklung von Angepasstheiten? (ca. 2 Ustd.) Wie kann die Entwicklung von angepassten Verhaltensweisen erklärt werden? (ca. 3 Ustd.) Wie lässt sich die Entstehung von Sexualdimorphismus erklären?

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
Sozialverhalten bei Primaten: exogene und endogene Ur- sachen, Fortpflan- zungsverhalten	erläutern datenbasiert das Fortpflan- zungsverhalten von Primaten auch unter dem Aspekt der Fitnessmaxi- mierung (S3, S5, E3, E9, K7).	(ca. 3 Ustd.) Wie lassen sich die Paarungsstrategien und Sozialsysteme bei Primaten erklären? (ca. 4 Ustd.)
Synthetische Evolutionstheorie: Koevolution	 erläutern die Angepasstheit von Le- bewesen auf Basis der reproduktiven Fitness auch unter dem Aspekt einer Kosten-Nutzen-Analyse (S3, S5–7, K7, K8). 	Welche Prozesse laufen bei der Koevolution ab? (ca. 2 Ustd.)

UV LK-E2: Stammbäume und Verwandtschaft

Inhaltsfeld 5: Genetik und Evolution

Zeitbedarf: ca. 16 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Entstehung und Entwicklung des Lebens

Schwerpunkte der Kompetenzbereiche:

- Zusammenhänge in lebenden Systemen betrachten (S)
- Fragestellungen und Hypothesen auf Basis von Beobachtungen und Theorien entwickeln (E)
- Merkmale wissenschaftlicher Aussagen und Methoden charakterisieren und reflektieren (E)
- Informationen aufbereiten (K)

•

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
Stammbäume und Verwandtschaft: Artbildung, Biodiversität, populationsgenetischer Artbegriff, Isolation	erklären Prozesse des Artwandels und der Artbildung mithilfe der Syn- thetischen Evolutionstheorie (S4, S6, S7, E12, K6, K7).	Wie kann es zur Entstehung unterschiedlicher Arten kommen? (ca. 4 Ustd.)
molekularbiologi- sche Homologien, ursprüngliche und abgeleitete Merk- male	deuten molekularbiologische Homologien im Hinblick auf phylogenetische Verwandtschaft und vergleichen diese mit konvergenten Entwicklungen (S1, S3, E1, E9, E12, K8).	Welche molekularen Merkmale deuten auf eine phylogenetische Verwandtschaft hin? (ca. 3 Ustd.)
	analysieren phylogenetische Stamm- bäume im Hinblick auf die Verwandt- schaft von Lebewesen und die Evo- lution von Genen (S4, E2, E10, E12,	Wie lässt sich die phylogenetische Verwandtschaft auf verschiedenen Ebenen ermitteln, darstellen und

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
	K9, K11).	analysieren? (ca. 4 Ustd.)
	deuten molekularbiologische Homologien im Hinblick auf phylogenetische Verwandtschaft und vergleichen diese mit konvergenten Entwicklungen (S1, S3, E1, E9, E12, K8).	Wie lassen sich konvergente Ent- wicklungen erkennen? (ca. 3 Ustd.)
Synthetische Evolutionstheorie: Abgrenzung von nicht-naturwissen- schaftlichen Vorstellungen	begründen die Abgrenzung der Synthetischen Evolutionstheorie gegen nicht-naturwissenschaftliche Positionen und nehmen zu diesen Stellung (E15–E17, K4, K13, B1, B2, B5).	Wie lässt sich die Synthetische Evolutionstheorie von nicht-natur- wissenschaftlichen Vorstellungen abgrenzen? (ca. 2 Ustd.)

UV LK-E3: Humanevolution und kulturelle Evolution

Inhaltsfeld 5: Genetik und Evolution

Zeitbedarf: ca.10 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Entstehung und Entwicklung des Lebens

Schwerpunkte der Kompetenzbereiche:

- Fragestellungen und Hypothesen auf Basis von Beobachtungen und Theorien entwickeln (E)
- Erkenntnisprozesse und Ergebnisse interpretieren und reflektieren (E)
- Informationen aufbereiten (K)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen
Evolution des Menschen und kulturelle Evolution: Ursprung, Fossilgeschichte, Stammbäume und Verbreitung des heutigen Menschen, Werkzeuggebrauch, Sprachentwicklung	 diskutieren wissenschaftliche Befunde und Hypothesen zur Humanevolution auch unter dem Aspekt ihrer Vorläufigkeit (S4, E9, E12, E15, K7, K8). analysieren die Bedeutung der kulturellen Evolution für soziale Lebewesen (E9, E14, K7, K8, B2, B9). 	Wie kann die Evolution des Menschen anhand von morphologischen und molekularen Hinweisen nachvollzogen werden? (ca. 7 Ustd.) Welche Bedeutung hat die kulturelle Evolution für den Menschen und andere soziale Lebewesen? (ca. 3 Ustd.)

